Skip to main content

Dr. Fibhaa Syed - ECG Class - ECG interpretation Steps.

By

Dr. Fibhaa Syed 
MBBS, FCPS, MRCP, SC Endocrinology
Assistant Professor of Medicine
Shaheed Zulfiqar Ali Bhutto Medical University,
Pakistan Institute of Medical Sciences


Following steps should be follow while interpreting ECG. Details may be found elsewhere, in this article brief outlines regarding ECG interpretation are shared, which were explained by Assistant Professor of Medicine, Dr. Fibhaa Syed during a Post-Graduate teaching session at Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad Pakistan.

Please note Normal Criteria is shared here unless specified otherwise.

ECG Interpretation Steps

  • Identification

    • Name, 
    • Date and Time

  • Calibration 

    • Normally
      • Width = 5 squares (1 big square), (one small square = 0.04 seconds)
      • Height = 10 small squares (1 small square = 0.1mV, 10 small squares = 1mV

  • Rate

    • 300 divided by Number of of large squares between two QRS complex = Rate / min

  • Rhythm

    • Check in lead II. 
      • QRS should be preceded by the P Wave. 
      • Check if Regular or Irregular
      • Check if P wave present or not. 

  • P wave morphology 

    • Criteria of normality
      • Check in lead 2.
        • should not be broader than 3 small squares
        • should not be taller than 2.5 small squares. 
      • Check in V1 as well
        • Negative component should not exceed the positive component. 

  • PR interval

    • Normal: 3 - 5 small squares

  • Cardiac axis

  • Q waves

    • Abnormal when
      • Width is more than 1 small square, 
      • Depth is more than is 1/4th of the R wave. 

  • QRS complex

    • Duration
      • Should not be more than 2.5 small squares. 
    • Voltage : check height in aVL and aVF
      • aVL: not more than 13 small squares
      • aVF: not more than 20  small squares
      • Tall R waves V1
      • If height is more than 3-4 small squares it will termed as tall R wave in V1.
    • Progression of R wave 
      • Normal Progression if 
        • Usually V5 is the tallest 
        • V5 is tallest and V6 is smaller
        • V4 is taller than V5 which is taller than V6. 
        • If V4 is taller than V5 and V5 is also smaller than V6 this is abnormal. 
    • Transition zone, 
      • When 1st positive becomes the first negative, Normally in V3 or V4. 
    • QRS waves in chest leads. 
      • Voltage criteria, 
        • R wave should not be taller than 27 small squares
        • S wave should not be deeper than 30 small squares
        • and Sum of R and S should not be more than 40 small squares
    • Ventricular activation time 
      • Beginning of Q wave to the tip of R wave 
      • Check in V5 and V6 and it should not be more than 1 small square. 

  • T waves;

    • In Limb leads: 
      • should follow QRS complex, if is not following then calculate T wave axis and Compare T wave axis with cardiac axis, If difference is more than 45 then it is pathological. 
    • Check T waves in chest leads. 
      • Height should not be more than 2/3rd of the height of the R wave
      • Generally upright but;
        • In 30% inverted in V1
        • In 10% inverted in V1 and V2
        • and in 1% inverted in V1, V2 and V3 (west Indian heart) 
          • should have previous ECG present to compare in above 3 cases. 
        • Generally T wave inversion in V4, V5 and V6 is abnormal. 

  • ST changes: 

    • Elevation and depressions (details will be added later)

  • QT interval

    • Normal 14 small squares.

RBBB criteria:


  1. Broad QRS > 2.5 small squares
  2. Secondary R wave in V1
    • Additional Criteria
      • ST depression 
      • T wave inversions in V1 to V4
      • Deep S wave in V1 and aVL

LBBB Criteria


  1. Broad QRS > 3 small squares
  2. Absence of secondary R wave in V1
  3. Normal Axis
  4. ST-T changes in V5 V6, lead 1 and aVL. 

Left ventricular hypertrophy


  1. Tallest R wave > 20 small squares
  2. Deepest S wave > 30 small squares 
  3. Sum of both more than 40 small squares
  4. Ventricular activation time > 1 small square 


Right ventricular hypertrophy 


  1. Frontal axis is more than 90
  2. Dominant R wave in V1 
  3. Tall R Wave in V1, that is greater than  3 - 4 small squares. 

Left axis deviation causes


  1. left anterior hemiblock
  2. LBBB
  3. Hyerkalemia

Right axis deviation causes


  1. RVH
  2. left posterior hemiblock 
  3. inferior wall MI. 

Disclaimer:
Article is under review and is not final. Errors may be present.

Special thanks to Prof. Dr. Rauf Niazi. 
and Dr. Salman for providing the missing data. 

Dr. Adil Ramzan
MBBS, MD Internal Medicine Resident,
Shaheed Zulfiqar Ali Bhutto Medical University
Pakistan Institute of Medical Sciences. 

Comments

Popular posts from this blog

Human Parasites, Types of Parasites, and Classification

Parasite: A parasite is a living organism which gets nutrition and protection from another organism where it lives. Parasites enter into the human body through mouth, skin and genitalia. In this article, we will generally discuss the types and classification of parasites. It is important from an academic point of view. Those parasites are harmful, which derives their nutrition and other benefits from the host and host get nothing in return but suffers from some injury. Types of Parasites Ecto-parasite: An ectoparasite lives outside on the surface of the body of the host. Endo-parasite: An endo-parasite lives inside the body of the host, it lives in the blood, tissues, body cavities, digestive tract or other organs. Temporary parasite: A temporary parasite visits its host for a short period of time. Permanent parasite: Permanent parasite lives its whole life in the host. Facultative parasite: A facultative parasite can live both independently and dependently. It lives in the

Difficulty in standing up from a sitting or squatting position, Causes & Solution

People who feel it difficult to stand up from a sitting or squatting position may have problem in one or more of the following structures. 1. Knee joint 2. Muscles of legs, thighs or buttock 3. Muscles of arms 4. Cerebellum Let’s now explain one by one, what kind of problems in above structures may cause difficulty in standing up from a sitting or squatting position. 1. How do problems in knee joints lead to difficulty in standing up? Knee joint is one of the primary and most affected joint that takes part in standing up. Other joints that take part are hip, ankle, knee, elbow, wrist and shoulder joint. Knee joint gets the most strain , and also knee joint is comparatively less supported. That’s why usually it’s the knee joint that starts to cry first because of arthritis. Knee joint arthritis causes long term knee pain , that makes the movement difficult at knee joint. Arthritis also makes the knee joint stiffer and slower and its range of motion also decreases. All these affects coll

How to taper off, wean off beta blocker, atenolol, Propranolol, Metoprolol

Beta blockers include, atenolol (Tenormin), propranolol (Inderal ) and metoprolol (Lopressor) and are used to treat high blood pressure, certain cardiac problems, migraine and few other conditions. People usually take atenolol, propranolol or metoprolol for many years as a treatment of high blood pressure or after having an episode of heart attack . Sometimes, it becomes necessary to withdraw these beta blockers due to their potential side effects that trouble the patients or sometimes doctor wants to change the drug and shift the patient to some other anti-hypertensive medicine. No matter whatever the cause is, whenever, a patient who has been using a beta blocker for a long period of time, and he needs to be stopped from further usage of that beta blocker, must not stop taking it. One should taper off the dose of a beta blocker. Now a question arises how to wean off or taper off a beta blocker? The method of tapering off beta blocker varies from individual to individual. Allow you